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Self-consistent beam distributions with space charge and dispersion in a circular ring lattice
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~Received 30 October 1997!

The interplay between dispersion and space charge in circular accelerators or storage rings is investigated by
looking for self-consistent, stationary solutions of the Vlasov-Poisson equation in the form of generalized
Kapchinsky-Vladimirsky~KV ! distributions. The smooth approximation is assumed. The results show a
growth of the rms quantities describing the beam distribution with the longitudinal momentum spread, and the
tune depression. This growth, however, is modest for realistic values of these parameters in strong focusing
systems.@S1063-651X~98!06204-7#

PACS number~s!: 29.20.Lq, 41.75.Fr, 41.85.Lc
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I. INTRODUCTION

Very little can be found in the accelerator physics lite
ture on the problem of the combined effect of space cha
and dispersion@1,2#. An obvious reason is that so far th
beam intensity in circular accelerators has never been
enough to justify a treatment of dispersion different from t
one usually done in a single-particle perspective. Some
vanced accelerator applications, however, require very h
current beams for which the space charge effects are
pected to play an important role. Examples include heavy
fusion drives, high energy boosters, accumulator rings,
spallation neutron sources.

In this context, the construction of a small electron ring
study a highly tune-depressed beam has been proposed
University of Maryland@3#. The goal is to produce, maintain
and study a beam with a tune depression in the range 0
0.4. In this range of highly space charge dominated be
the answer to the question of whether the usual sin
particle treatment of dispersion is still justified is not obv
ous. Also, it was important for the purposes of the ring d
sign to understand the combined effects of space charge
dispersion in shaping the beam size. In order to get an ins
into the scale of the problem, we studied self-consistent,
tionary solutions of the proper Vlasov-Poisson equation
cluding the dispersive term. Specifically, in this paper
explore a particular kind of distribution that generalizes
usual KV @4# beam to the case where dispersion is prese

A simplified model of the electron ring dynamics h
been assumed, in which the external focusing functions
the radius of curvature are constant. Moreover all the n
linearities due to the external focusing are neglected as
as all the chromatic terms.

The structure of the paper is as follows. After some g
eral remarks on dispersion~Sec. II!, we introduce the Hamil-
tonian for our model and the general form of the Vlaso
Poisson equation. Next, in Sec. III we write and solve
Poisson equation for the particular case of a KV beam wh
all the particles are equally off-momentum. In Sec. IV w
write the Poisson equation for the case where the beam h
generalized KV distribution in the transverse plane and
571063-651X/98/57~4!/4725~8!/$15.00
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Gaussian distribution for the longitudinal momentum spre
The following section contains a discussion of the numeri
solution for the Poisson equation. Finally we treat the pro
lem of the evolution of a beam through injection from
straight channel to a dispersive channel~Sec. VIII!.

II. DISPERSION

Dispersion describes the deviation of a particle from
reference orbit due to a deviation from the design momen
or energy~see, e.g.,@5,6#!. The dispersion functionD(z) is
defined as the solution of the equation:

D~z!91kx~z!D~z!5
1

r~z!
, ~1!

with a prime indicating a derivative with respect toz.
In a multiparticle perspective we are interested in desc

ing a particle distribution functionf (x,px ,y,py ,d,z), and
how the distribution itself or its moments are affected by t
presence of dispersion. Consider for the moment a beam
noninteracting particles. From the Vlasov equation asso
ated with the Hamiltonian~2!,

H5
1

2
~px

21py
2!1

1

2
@kx~z!x21ky~z!y2#2

d

r~z!
x, ~2!

we can easily derive the differential equations for the sec
moments of the distribution~in this context we can ignore
the motion in the vertical plane!:

d

dz
^x2&22^xpx&50, ~3a!

d

dz
^px

2&12kx~z!^xpx&5
2

r
^pxd&, ~3b!

d

dz
^xpx&2^px

2&1kx~z!^x2&5
1

r
^xd&, ~3c!
4725 © 1998 The American Physical Society
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4726 57MARCO VENTURINI AND MARTIN REISER
d

dz
^xd&5^pxd&, ~4a!

d

dz
^pxd&52kx~z!^xd&1

1

r
^d2&. ~4b!

The brackets denote the averaging over the phase s
variables according to

^j ij j&5

E j ij j f ~x,px ,y,py ,d!dm

E f ~x,px ,y,py ,d!dm

,

where j i , j j are any canonical variables, anddm
5dxdpxdydpydd. The last two equations~4! can be com-
bined into a single differential equation

d2

dz2
^xd&1kx^xd&5

1

r
^d2&. ~5!

From comparison between Eqs.~1! and ~5! we conclude

^xd&5^d2&D~z!,

^pxd&5^d2&D~z!8. ~6!

After substituting Eqs.~6! into ~3! we see that Eq.~3!
turns into an inhomogeneous linear system, a particular
lution of which, as it can be easily verified by direct subs
tution, is given by ^x2&5^d2&D(z)2, ^px

2&5^d2&D8(z)2,
^xpx&5^d2&D(z)D8(z). Therefore, we can write the gener
solution as a superposition of that particular solution and
general solution of the homogeneous part of the differen
system, which we indicate with the subscript ‘‘o’’:

^x2&5^x2&o1^d2&D~z!2,

^px
2&5^px

2&o1^d2&D8~z!2, ~7!

^xpx&5^xpx&o1^d2&D~z!D8~z!.

In the general case the solution of the homogeneous
of Eq. ~3! will also depend on̂d2&. In those cases@7# where
the dependence is of an order higher than^d2&, we see from
Eq. ~7! that the dispersion function weights the depende
of the moments on̂ d2&. Moreover, the^d2&-independent
part of the solution of the homogeneous part of Eq.~3! can
be interpreted physically as describing the moments of
distribution either in the limit of vanishing momentum
spread (̂d2&50), or at those locations inz where the dis-
persion function vanishes.

One of the questions we want to address in this pape
how Eqs.~7! changes when we allow space charge effect
enter the picture.

A consequence of the presence of space charge i
modify the strength of the effective focusing forces acting
the particles and therefore todepressthe tunenox . For a
round KV beam@8# of radiusa in the smooth approximation
the depressed tunenx reads

nx
25nox

2 2
K

a2
ro

2, ~8!
ce

o-
-

e
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whereK52I (I ob3g3) is the generalized perveance@6# with
I being the beam current,b, g the relativistic factors, and
I o.17 kA for electrons. In the absence of space chargeD
5ro /nox

2 . We can question whether in the presence of sp
charge the expression for the second moment of the distr
tion can be recovered from Eqs.~7! by the changenx↔nox
in the expression for the dispersion, wherenox is the unde-
pressed tune andnx is the depressed tune for the beam d
tribution in the absence of dispersion@9#.

As we will show, the estimate we get in this way, whi
working for a moderate space charge, fails for higher
pressed tune, giving much larger values than the correct s
consistent theory. This is to be expected since the resha
of the beam distribution due to dispersion carries a chang
the tune.

In particular, since according to Eqs.~7! the presence of
dispersion enlarges transversally the beam size, the s
charge forces become weaker. As a consequence, the
becomes less depressed than in the case with no disper

III. THE VLASOV-POISSON EQUATIONS

Our model is described by a Hamiltonian@5# H5H'

1H i , whereH i5(m2c4/Eo
2)d2 is a purely longitudinal term

and

H'5
1

2
~px

21py
2!1

k

2
~x21y2!2

x

ro
d1goc~x,y! ~9!

~with go5q/mvz
2g3).

The Hamiltonian refers to a beam of particles of chargeq
and massm in a smooth circular channel where both th
external focusing functionk and the radius of curvaturero
arez-independent. Also, we assume that the external foc
ing is the same in the horizontal and vertical plane. T
self-force is described by the potentialc. The design mo-
mentum, longitudinal velocity, and the corresponding re
tivistic factor arepo , vz , andg.

In the model we neglect all the nonlinearities comi
from the external focusing as well as all the chromatic ter
since they are of third order. We also ignore space cha
effects due to the finite curvature of the beam.

Moreover, since the Hamiltonian is time independent~no
beam acceleration! the momentum deviationd is a constant
of the motion. ClearlyH' is also an integral of the motion
By choosing az-independent potentialc describing the self-
force, we neglect the effects of the longitudinal space cha
By doing so the model is understood to describe the dyn
ics of continuous~unbunched! beams with a thermal energ
spread. Clearly the effects of the energy spread induced
the bunch edge effects are not captured in our model, an
would probably be rather challenging to incorporate them
a self-consistent treatment with dispersion. For a non-s
consistent description of these effects for a single p
through bending, see@10#.

We want to search for self-consistent solutio
f (x,px ,y,py ,d) of the Vlasov-Poisson equation associat
with H:

] f

]z
1$ f ,H%50, ¹2c52

q

e0
n~x,y!, ~10!



s
of
o

ula
it

rs

l K
m
ti

a

ua

en-

-
f a
s-

a-
in
n

ill
mo-

this
be
n-

d

57 4727SELF-CONSISTENT BEAM DISTRIBUTIONS WITH . . .
wheren(x,y) is the beam density

n~x,y!5E E E f ~x,px ,y,py ,d!dddpxdpy . ~11!

In particular, we want to look for stationary solution
] f /]z50. We recall that any function of the integrals
motion of a Hamiltonian system is a stationary solution
the corresponding Vlasov equation. Therefore, a partic
stationary solution of the Vlasov equation associated w
the HamiltonianH is given by

f ~x,px ,y,py ,d!5 f i~d! f'~H'!.

In this paper we consider a distribution in the transve
Hamiltonianf'(H') in the form of a Diracd function. In the
absence of dispersion such a choice leads to the usua
beam. For the distribution in the longitudinal momentu
spread we discuss two cases: a monochromatic distribu
and a Gaussian distribution.

IV. MONOCHROMATIC KV BEAM

First of all, consider the particular choice

f i~d!5 d̂~d2do!, ~12a!

f H'
~H'!5 f od̂~H'2Ho!. ~12b!

Here d̂ is the Dirac delta function andf o is a constant.
Such a distribution describes a beam of particles that
off-momentum by the same amountdo . Notice that ford
5do50 we recover the usual KV beam.

The space density associated withf is given by

n~x,y!5 f oE E E dpxdpyd dd̂~d2do!d̂~H'2Ho!

52p f oHS Ho2
k

2
~x21y2!1

do

ro
x2goc D ,

whereH is the Heaviside step function. The Poisson eq
tion for the self-potential reads

¹2c52
q

eo
2p f oHS Ho2

k

2
~x21y2!1

do

ro
x2goc D .

~13!

One can verify that a solution is given by

c~x,y!52
qp f o

2e0
F S x2

do

rokD 2

1y2G ~14!

for @x2do /(rokx)#21y2<a2, and

c~x,y!52
qp f oa2

e0
XlnH 1

aF S x2
do

rokD 2

1y2G1/2J 1
1

2
C
~15!

for @x2do /(rokx)#21y2.a2, where

a25
1

2S kx2go

qp f o

e0
D 21S Ho1

do
2

2ro
2kx

D . ~16!
f
r

h

e

V

on

re

-

The calculation shows that in the presence of a mom
tum deviation represented by ad function the beam density
is that of an off-centered KV beam of radiusa. The amount
of the deviation from the axis is given bydoD, with the
dispersion functionD51/(rokx) given in terms of the unde
pressed focusing function. In other terms, particles o
monochromatic KV round beam, from the view point of di
persion, behave like single particles.

V. GENERALIZED KV BEAM

Next, we look for solutions of the Vlasov-Poisson equ
tions describing a beam with a Gaussian-like distribution
the longitudinal momentum and a KV-beam-like distributio
in the transverse plane:

f i~d!5
1

doAp
e2d2/do

2
, ~17a!

f H'
~H'!5 f od̂~H'2Ho!. ~17b!

We notice at this point that the resulting distribution w
not have a perfect Gaussian character in the longitudinal
mentum spread, because the termf H'

(H') also depends on
d. However, in the range of parameters considered in
paper the deviation from a pure Gaussian distribution will
relatively small. In particular, the rms longitudinal mome
tum spreadsd5A^do

2& will differ from do /A2 by a few per-
cents.

Observe that in the limitdo→0, we recover the usual KV
distribution. In the following we will refer to the distribution
described by Eq.~17! as a ‘‘generalized KV beam.’’

The corresponding space density is

n~x,y!52p f o

1

doAp
E

2`

`

HS l~x,y!1
dox

ro
t De2t2dt,

~18!

where we have defined

l~x,y!5Ho2
kx

2
x22

ky

2
y22goc~x,y!. ~19!

The integral in Eq.~18! can be easily carried out an
expressed in terms of the error function,

n~x,y!5p f oFerfS l~x,y!ro

douxu D11G , ~20!

with

erf~t!5
2

Ap
E

0

t

e2t2dt.

The Poisson equation then reads

¹2c52
q

eo
p f oH erfF ro

douxuS Ho2
kx

2
x22

ky

2
y22goc D G11J .

~21!
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The two parametersf o and Ho are related, respectively, t
the density of the beam, and its size and emittance. T
depend on each other through the normalization equatio

NL5E E n~x,y!dx dy

5p f oE E FerfS l~x,y!ro

douxu D11Gdx dy, ~22!

whereNL is the linear~longitudinal! density of the beam: It
depends on the currentI by the relationNL5I /(qvz). When
we solve Eq.~21! for different values of the parameterdo we
will be interested in comparing solutions corresponding
beams that carry the same current. After settingf o to a fixed
value, we shall use Eq.~22! to determineHo .

Finally, notice that in the limitdo→0 Eq. ~21! turns into
Eq. ~13!, as expected, since

lim
do→0

FerfS t

do
D11G52H~t!. ~23!

A. Emittance calculation

The beam distribution can be characterized in terms of
emittance and related rms quantities. The rms emittanc
defined by

ex5~^x2&^px
2&2^xpx&

2!1/2

~analogous expression forey!.
For a KV round beam of radiusa without dispersion@see

Eq. ~12! with do50#, it is easily found that

^x2&o5
a2

4
, ^px

2&o5
Ho

2
, ^xpx&o50.

Therefore, the emittance reads

eox5
a

2
AHo

2
. ~24!

For the case with dispersion it is possible to reduce
expressions for the second moments to calculation of do
integrals overx andy @11#:

^x2&5
f op

NL
E E x2FerfS l~x,y!ro

douxu D11Gdx dy, ~25!

^px
2&5

f op

NL
E E l~x,y!FerfS l~x,y!ro

douxu D11Gdx dy

1
f oAp

NL
E E douxu

ro
e2@l~x,y!ro /douxu#2

dx dy,

~26!

^xpx&50. ~27!

By the same token we can evaluate the rms value of
longitudinal momentum spread as a function of the para
eterdo :
y

o

e
is

e
le

e
-

^d2&5
do

2

2
2

do
2

2Ap

f o

NL
E E dx dyS l~x,y!ro

douxu D
3e2@l~x,y!ro /douxu#2

. ~28!

The normalization factorNL is the same as in Eq.~22!. In the
limit of vanishing space chargec→0, the calculation of sec-
ond moments can be carried out analytically. We found

^d2&5
do

2

2
1

1

4

do
4

kro
2Ho

, ~29!

^x2&5
a2

4
1

^d2&

k2ro
2

1
1

16

do
4

k3ro
4Ho

, ~30!

^px
2&5

Ho

2
1

1

16

do
4

k2ro
4Ho

, ~31!

NL52p2f oS 2Ho

k
1

do
2

2k2ro
2D .

Notice the expressions above are consistent with the Eq~7!
we derived for a general distribution~i.e., in the expression
for ^x2& the coefficient of̂ d2& is D2; the first correction to
^px

2& is of orderdo
4!.

One of our goals will be to check the scaling of the rm
quantities with respect todo , when space charge effects a
included.

VI. THE NUMERICAL SOLUTIONS

In solving numerically the nonlinear Poisson equati
~21!, we have used the successive overrelaxation met
~SOR! described in@12# and recommended in@13#.

The numerical solutions of the Poisson equation presen
in this paper are based on a choice of parameters that m
the design values of the Maryland Electron Ring@3# in the
smooth approximation. See Table I. In the calculations
consider the case of a beam passing through a pipe of sq
cross section with side of length 2 cm. The wall of the pi
is assumed to be an equipotential boundary for the poten
c. In this paper we show two sets of solutions.

The solutions of the first set have been obtained by va
ing the parameterdo , which is related to the rms valuesd

.do /A2 of the longitudinal momentum distribution. In pa
ticular, do ranges between 1022 and 1023. The results, in
terms of the horizontal profile (y50) of the beam density
n(x,y), see Eq.~20!, are shown in Fig. 1.

The various solutions have been normalized in such a w
that the corresponding beams carry the same currenI

TABLE I. Parameters for the University of Maryland electro
ring smooth model.

Beam energyEo 10 keV
Tuneno 7.6
Focusing functionk 17.437 m22

Radius of curvaturero 1.82 m
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57 4729SELF-CONSISTENT BEAM DISTRIBUTIONS WITH . . .
50.105 A!. In other words, the normalization constantNL ,
see Eq.~22!, is the same in all the cases. SinceNL depends
on do , in order to achieve the desired normalization the
rameterHo has to be properly tuned. The dependence ofHo
on do , however, turns out to be quite weak. The other p
rameter of the problem,f o , has been kept fixed:f o governs
the peak value of the beam density and should be inde
dent ofdo .

The current we have chosen corresponds to a tune de
sion n/no50.317.~The tune depression is evaluated for t
KV beam in the limitdo→0!. Figure 2 shows the full density
function in the (x,y) plane fordo50.01.

The rms valueŝx2&do
of the horizontal size of the beam

and the horizontal emittances have been calculated accor
to Eq.~27! and the results shown in Fig. 3 and Fig. 4. In bo
pictures we plot the scaled valuesxrms5(^x2&do

/^x2&o)1/2

and ex /eox , where^x2&o and eox are the values of the cor
responding quantities fordo50 ~standard KV beam!. That
is, the rms quantities are scaled with respect to the co
sponding quantities of a KV beam in a straight channel un
the same external focusing and with the same current.

The curves in the figures are the parabolic fitting obtain
by retaining the first four points. As we can see, for sm

FIG. 1. Scaled density profilen(x,y)/n(0,0) for the generalized
KV beam aty50. Ten density profiles are shown corresponding
values of do ranging from 0.001 to 0.01 (I 50.105 A, n/no

50.317).

FIG. 2. Density distributionn(x,y) for I 50.105 A, n/no

50.317,do50.01.
-

-

n-

es-

ing

e-
er

d
ll

values ofdo , do,0.005, the rms quantities scale accordi
to a quadratic power as in the limit of vanishing space cha
@see Eqs.~30!, ~31!#.

In the second set of solutions the longitudinal moment
spread was kept fixed (do50.01), while varying the value o
the beam currents. Again, for a given choice of the curr
~or NL! the normalization equation~22! has to be solved for
Ho ~the other parameterf o is kept constant!. The dependence
of Ho on the current is related to the fact that as the sp
charge increases the emittance of the beam has to be
creased in order for the beam to maintain the same s
Indeed, Eq.~24! shows that in the absence of dispersion t
emittance is proportional to the square root ofHo .

Ten different currents have been considered, ranging fr
I 50.02 to I 50.112 A, and corresponding to a tune depre
sion ranging betweenn/no50.91 andn/no50.20. The val-
ues of the parameters for the various beams are summa
in Table II. The tune depression and emittance reported
the table refer to the corresponding KV beams in strai
channels. The density profiles are shown in Fig. 5.

The rms values of the horizontal size of the beam ha
also been calculated and are shown in Fig. 6@again, what we
actually plot is the scaled quantityxrms5(^x2&do

/^x2&o)1/2].
The data shown in the picture allow one to check the
equacy of the first of Eqs.~7! to describe the horizontal rm
size of the beam after the substitution of the undepres

FIG. 3. Scaled rms horizontal size of the beam,xrms

5(^x2&do
/^x2&o)1/2, as a function of do (I 50.105 A, n/no

50.317).

FIG. 4. Scaled horizontal rms emittanceex /eox , as a function of
do (I 50.105 A,n/no50.317).
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4730 57MARCO VENTURINI AND MARTIN REISER
tune with the depressed tune in the expression for the dis
sion.

The dashed curve in the picture is

xrms5S 11
do

2D2

2^x2&o
D 1/2

~32!

with D5ro /n2, wheren is the depressed tune evaluated
the KV beam in the absence of dispersion. Although Eq.~32!
gives a good approximation if the tune depression is su
ciently high, for a smaller tune depression it provides a v
large upper bound.

Finally the scaled emittance has also been calculated
plotted in Fig. 7.

VII. DISCUSSION

The main purpose of this study was to evaluate the sca
of the parameters characterizing the beam~rms size, emit-
tance! as a function of the longitudinal momentum devi
tions and space charge. The stationary solutions of
Vlasov-Poisson equation have been calculated in the form
generalized KV beam distributions, which turn into the sta
dard KV distributions in the limit of vanishing longitudina
momentum spread. For a given current we see that the p

TABLE II. Current, perveance, tune depression, and rms em
tance for round KV beams of 10 keV electrons. Beam radius
cm.

I ~A! K n/no eox ~mm mrad!

0.0200 0.298631023 0.910 95.03
0.0302 0.451331023 0.861 89.88
0.0404 0.603931023 0.809 84.40
0.0507 0.756531023 0.752 78.54
0.0609 0.909231023 0.692 72.22
0.0711 1.061831023 0.625 65.28
0.0813 1.214531023 0.551 57.51
0.0916 1.367131023 0.465 48.52
0.1018 1.519731023 0.358 37.41
0.1120 1.672431023 0.202 21.12

FIG. 5. Section of the density distributionsn(x,y) at y50 for
various beam currents~see Table II!. The densities are in units o
107 particles/cm3. do50.01.
r-

r

-
y

nd

g

e
of
-

s-

ence of a finite momentum spread smooths the space d
bution in the horizontal plane. As a result a tail appea
which is responsible for the rms growth of the horizon
plane. The tail profile has a rough exponential behav
which is a reflection of the particular distribution of the m
mentum spread we chose. For small values of the rms
mentum spreadsd.do /A2 the rms horizontal scales qua
dratically with respect todo as expected.

The growth in the horizontal size of the beam, for a fix
momentum spread, is a function of the current. In particu
it increases with the current~i.e., it increases as the tun
depressionn/no decreases!. This effect is expected. Fo
larger currents the effective focusing on the particles due
the space charge is smaller and therefore particles
momentum will tend to reach larger distances off-axis on
horizontal plane. However, as the beam spreads out tr
versely the charge density decreases and the net focu
gets less depressed. This mechanism explains the ove
mate of the rms horizontal size growth, based on the sim
replacement of the undepressed tune with the depressed
in the expression for the dispersion function~Fig. 6, dashed
line!. For an attempt to give a more accurate analytical
scription of the rms quantities of the beam as a function
the tune depression, we refer to another paper@14#.

Finally we want to remark that all the comparisons ha
been carried out between a solution of the full Vlaso
Poisson equation with the dispersive terms and a solutio

FIG. 6. Scaled horizontal rms sizexrms5(^x2&do
/^x2&o)1/2 as a

function of the tune depressionn/no ~dots!. The dashed line repre
sents Eq.~32!.

FIG. 7. Scaled horizontal rms emittanceex /eox , as a function of
the tune depressionn/no .
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the same equation without a dispersive term~i.e., 1/ro50!
corresponding to a beam carrying the same current and
posed to the same external focusing. The last solution
course is just an ordinary KV beam. Both solutions are s
tionary solutions in smooth circular and straight channe
respectively.

It is interesting to question whether the generalized K
beam is the result of the evolution of the corresponding
beam after injection into a dispersive channel, or more g
erally what is the relationship between the two. It is o
conjecture that a least for relatively small currents the g
eralized KV beam should provide a close approximation
the stationary solution of the Vlasov equation that
achieved after a matched injection of an ordinary KV be
with Gaussian momentum spread into a circular channe
the next section this issue is addressed by working ou
simplified analytical model.

VIII. ‘‘TIME’’ DEPENDENT VLASOV EQUATION

So far we have been dealing with the problem of study
the stationary solutions of the Vlasov equation. However
pointed out in the preceding section, it would also be int
esting to investigate the evolution of a~standard! KV beam
after injection into a smooth dispersive channel. The ex
treatment of this problem would require the solution of t
‘‘time’’ dependent Vlasov equation~10! and related Max-
well equations. The problem would probably be best a
most efficiently solved by using a particle in cell~PIC! code
instead of directly trying to solve the required PDE.

In this section we work out a simplified analytical mod
and explore the two cases of matched and mismatched in
tion. In the model we assume that the only net effect of sp
charge is to depress the focusing function. Also, we neg
all the possible effects stemming from time-dependent fie

First, let us introduce the symbolzW to denote the set of the
dynamical variables. A certain distribution in the phase sp
at the initial locationz5zo, g(zWo), evolves into a distribu-
tion f (zW f ,zf) at z5zf given by

f ~zW f ,zf !5g~M~zo,zf !

21
zW f !, ~33!

FIG. 8. Scaled density profilen(x,0)/n(0,0) of the KV beam
~simplified analytical model! after a matched injection~solid line!
and profile corresponding to the stationary solution of the Vlas
Poisson equation evaluated numerically~dashed line!.
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whereM(zo,zf ) is the transfer map that gives the position
any point in the phase space atz5zf as a function of the
position in phase space atz5zo:

zW f5M~zo,zf !z
Wo.

For a continuous bend of radiusr, in the linear approxi-
mation the transfer map reads

xf5xo cosvzf1px
o 1

v
sin vzf1

d

rv2
~12cosvzf !,

px
f 52xov sin vzf1px

o cosvzf1
d

rv
sin vzf ,

yf5yo cosvzf1py
o 1

v
sin vzf ,

py
f 52yov sin vzf1py

o cosvzf , ~34!

wherev is the depressed betatron frequency.
We consider two cases: a mismatched injection given

an abrupt transition from a straight injection line to th
smooth circular channel and a matched injection. T
matched injection can be obtained by a continuous bend w
radius of curvaturerB52ro , the same focusingv as in the
circular machine and lengthzB5p/v5lb/2 ~lb is the beta-
tron oscillation wavelength!. In both cases we assume for th
beam an initial KV distribution described by

g5
f o

doAp
e2d2/do

2
d̂S 1

2
~px

21py
2!1

v2

2
~x21y2!2HoD .

~35!

Next we want to calculate the evolution of the beam de
sity after injection. Consider the matched case first. Af
evaluating the distribution function atz5zf,zB using Eqs.
~33! and ~35! and the expression for the transfer map~34!,
we integrate overpx ,py ,d to find the corresponding spac
density to be

n~x,y!5 f op@erf„t1~x,y,z!…2erf„t2~x,y,z!…#. ~36!

Heret1 andt2 are defined by

t6~x,y,z!5v2
rB

do

x6Aa22y2

~12cosvz!
, ~37!

with a being the radius of the KV beam at injection. Atz
5zB we get a profile that matches the stationary beam d
sity within the circular channel.

Comparison~Fig. 8! with the density profile obtained by
numerical solution of the Vlasov-Poisson equation will allo
us to determinekeff5v2, by numerical fitting. For the cas
do50.01 andI 51.05 A, we find that we obtain relatively
similar profiles ifkeff52.63 m22. If keff were calculated us-
ing an ideal KV beam model with radiusa using Eq.~8!, we

-
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would find the resultkeff51.75 m22. The deviation between
the two values can be justified in terms of the enlargemen
the horizontal cross section of the beam and consequen
crease of the space charge forces. In other terms, as we
already noticed, the effective tune, because of dispersio
larger than before injection.

In the case of a mismatched injection the density is
fined by Eqs.~36! and ~37! with ro replacingrB . The for-
mula shows that the beam pulses around the equilibrium
file corresponding to the matched beam.

The profiles at four different values of z
(lb/16,lb/8,lb/4,lb/2) are shown in Fig. 9. Atz5lb/4 the

FIG. 9. Evolution of a KV beam with Gaussian longitudin
momentum spread injected into a smooth dispersive channel~sim-
plified analytical model!. Mismatched injection. The four beam
density profiles correspond toz5lb/16,lb/8,lb/4,lb/2, wherelb is
the betatron oscillation wavelength.
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density profile is the same as in the case of a matched in
tion ~solid line in Fig. 8!; at z5lb/2 it reaches its maximum
extension.

IX. CONCLUSIONS

In this paper we have shown and discussed stationary
lutions of the Vlasov-Poisson equation describing beams
charged particles in the presence of dispersion. In particu
we have considered solutions that provide the generaliza
of the KV beam. The numerical solutions presented in
paper show, as expected, that dispersion reshapes an
larges the beam distribution. The growth, however, evalua
with respect to ordinary KV beams obtained as solution
the same Vlasov equation with vanishing dispersive term
modest. In a strong focusing lattice (no@1), for a tune de-
pression (n/no) in the range 0.2–0.4 the growth for emi
tance and rms horizontal radius is of the order of or bel
10%. One important lesson learned from the study is that
highly space charge dominated beams, the dispersion f
tion cannot be calculated simply by changing the un
pressed tune with depressed tunes in the formulas. This
sult, obtained here in the smooth approximation, h
motivated us to develop a method to calculate~approxi-
mately! the dispersion function in the more general case w
a z dependence, which is relevant for matching purpo
@14#.
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