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Self-consistent beam distributions with space charge and dispersion in a circular ring lattice
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The interplay between dispersion and space charge in circular accelerators or storage rings is investigated by
looking for self-consistent, stationary solutions of the Vlasov-Poisson equation in the form of generalized
Kapchinsky-Vladimirsky (KV) distributions. The smooth approximation is assumed. The results show a
growth of the rms quantities describing the beam distribution with the longitudinal momentum spread, and the
tune depression. This growth, however, is modest for realistic values of these parameters in strong focusing
systems[S1063-651X98)06204-1

PACS numbds): 29.20.Lq, 41.75.Fr, 41.85.Lc

I. INTRODUCTION Gaussian distribution for the longitudinal momentum spread.
The following section contains a discussion of the numerical

Very little can be found in the accelerator physics litera-solution for the Poisson equation. Finally we treat the prob-
ture on the problem of the combined effect of space chargem of the evolution of a beam through injection from a
and dispersiorf1,2]. An obvious reason is that so far the straight channel to a dispersive chan(ttc. VIII).
beam intensity in circular accelerators has never been high
enough to justify a treatment of dispersion different from the Il. DISPERSION
one usually done in a single-particle perspective. Some ad- ) ) o ]
vanced accelerator applications, however, require very high- Dlsper5|on_descr|bes the_ d_eV|at|on of a pa_rtlcle from the
current beams for which the space charge effects are exeference orbit due to adeV|at|or_1 from_the deS|gn mom_entum
pected to play an important role. Examples include heavy io®" energy(see, e.g.[5,6). The dispersion functiol(z) is
fusion drives, high energy boosters, accumulator rings, anf€fined as the solution of the equation:
spallation neutron sources.

In this context, the construction of a small electron ring to
study a highly tune-depressed beam has been proposed at the
University of Maryland 3]. The goal is to produce, maintain,
and study a beam with a tune depression in the range 0.2with a prime indicating a derivative with respectzo
0.4. In this range of highly space charge dominated beams |n a multiparticle perspective we are interested in describ-
the answer to the question of whether the usual singleing a particle distribution functiorf(x,py.y.py,48,2), and
particle treatment of dispersion is still justified is not obvi- how the distribution itself or its moments are affected by the
ous. Also, it was important for the purposes of the ring depresence of dispersion. Consider for the moment a beam of

sign to understand the combined effects of space charge am@ninteracting particles. From the Vlasov equation associ-
dispersion in shaping the beam size. In order to get an insighited with the Hamiltoniari2),

into the scale of the problem, we studied self-consistent, sta-
tionary solutions of the proper Vlasov-Poisson equation in- 1 1 S
cluding the dispersive term. Specifically, in this paper we H= §(p>2<+ py)+ E[kx(Z)X2+ ky(2)y?]— HX, (2
explore a particular kind of distribution that generalizes the P
usual KV[4] beam to the case where dispersion is present. . . . . .
A simplified model of the electron ring dynamics has we can easily derl\_/e t_he (_Jllff_erenjual equations for th_e second
been assumed, in which the external focusing functions an oments OT the d|str|.but|or(1|n this context we can ignore
the radius of curvature are constant. Moreover all the nont ¢ motion in the vertical plane
linearities due to the external focusing are neglected as well q
as all the chromatic terms. 2 _
The structure of the paper is as follows. After some gen- dZ<X )= 2xp0=0, 33
eral remarks on dispersigec. 1), we introduce the Hamil-
tonian for our model and the general form of the Vlasov- d 2
Poisson equation. Next, in Sec. lll we write and solve the d_z<p>2<>+2kx(z)<xpx>: ;(pxt?), (3b)
Poisson equation for the particular case of a KV beam where
all the particles are equally off-momentum. In Sec. IV we q 1
write the Poisson equation for the case where the beam has a el /2 2_T
generalized KV distribution in the transverse plane and a dz<XpX> (P +kd(2)(X >_p<X5>’ 30

1
D(z) +kx(Z)D(Z):ﬁa @
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d whereK =21(1,83v?) is the generalized perveanpg with
G720 =(Pxd), (43 | being the beam curreng, y the relativistic factors, and
I,=17 kA for electrons. In the absence of space chdpge
d 1 =p0/vf,x. We can question whether in the presence of space
a7 Px0) = —ku(2){x8) + l_)<52>' (4b)  charge the expression for the second moment of the distribu-
tion can be recovered from Eq&) by the change/,« v,y
The brackets denote the averaging over the phase spagethe expression for the dispersion, wheig is the unde-

variables according to pressed tune ang, is the depressed tune for the beam dis-
tribution in the absence of dispersi@a.
f E&T(4Dy.Y.Py, ) dp Ag we will show, the estimate we get in this way, while
working for a moderate space charge, fails for higher de-

(&&= ’ pressed tune, giving much larger values than the correct self-
f f(X,px.Y. Py, 6)du consistent theory. This is to be expected since the reshaping

of the beam distribution due to dispersion carries a change in
where &, § are any canonical variables, andu the tune.

=dxdpdydpdé. The last two equationgt) can be com- In particular, since according to Eqgl) the presence of

bined into a single differential equation dispersion enlarges transversally the beam size, the space
o 1 charge forces become weaker. As a consequence, the tune
E<X5>+kx<X6>: ;<52>. (5) becomes less depressed than in the case with no dispersion.

. Ill. THE VLASOV-POISSON EQUATIONS
From comparison between Ed4) and(5) we conclude

Our model is described by a Hamiltonidb] H=H
(x8)=(8)D(2), A 48] H-H,

+H,, whereH, = (m?c*/E2) 6 is a purely longitudinal term
(Px3)=(5°)D(2)". (6 and

After substituting Eqs(6) into (3) we see that Eq(3) 1,0, k X

turns into an inhomogeneous linear system, a particular so- Ho=3 (Pt py)+ E(X2+y2)_ p_05+ Joth(Xy)  (9)

lution of which, as it can be easily verified by direct substi-

tution, is given by (x2)=(5)D(2)2, (p2=(s%)D'(2)%  (With go=a/mv’y°).

(xp,)=(58%D(2)D’(2). Therefore, we can write the general ~ The Hamiltonian refers to a beam of particles of chayge

solution as a superposition of that particular solution and th@nd massm in a smooth circular channel where both the

general solution of the homogeneous part of the differentiagxternal focusing functiok and the radius of curvature,

system, which we indicate with the subscrip™ arez-independent. Also, we assume that the external focus-
N 5 ) ing is the same in the horizontal and vertical plane. The

(x5 =(x%)o+(69D(2)%, self-force is described by the potentigl The design mo-

2\ _ /2 2NN N2 mentum, longitudinal velocity, and the corresponding rela-
(P =(Po* (979D (2)%, @) tivistic factor arep,, v,, andvy.
(XPY) = {XPo+(5)D(2)D’(2). In the model we neglect all the nonlinearities coming

from the external focusing as well as all the chromatic terms
In the general case the solution of the homogeneous pasince they are of third order. We also ignore space charge
of Eq. (3) will also depend o 6%). In those casel’] where  effects due to the finite curvature of the beam.
the dependence is of an order higher tkaf), we see from Moreover, since the Hamiltonian is time independertt
Eq. (7) that the dispersion function weights the dependencéeam acceleratiorthe momentum deviatio# is a constant
of the moments or{5%). Moreover, the(s?)-independent of the motion. ClearlyH, is also an integral of the motion.
part of the solution of the homogeneous part of BB).can By choosing a-independent potentiak describing the self-
be interpreted physically as describing the moments of théorce, we neglect the effects of the longitudinal space charge.
distribution either in the limit of vanishing momentum By doing so the model is understood to describe the dynam-
spread (6%)=0), or at those locations in where the dis- ics of continuougunbuncheibeams with a thermal energy
persion function vanishes. spread. Clearly the effects of the energy spread induced by
One of the questions we want to address in this paper ithe bunch edge effects are not captured in our model, and it
how Egs.(7) changes when we allow space charge effects tavould probably be rather challenging to incorporate them in
enter the picture. a self-consistent treatment with dispersion. For a non-self-
A consequence of the presence of space charge is wwonsistent description of these effects for a single pass
modify the strength of the effective focusing forces acting onthrough bending, sell0].

the particles and therefore wepressthe tunev,,. For a We want to search for self-consistent solutions
round KV bean{8] of radiusa in the smooth approximation, f(x,py,y,py,d) of the Vlasov-Poisson equation associated
the depressed tuneg, reads with H:

K of q
vi=vhe 0h ® ZH{THI=0 V2=—n(y), @0
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wheren(x,y) is the beam density The calculation shows that in the presence of a momen-
tum deviation represented by&function the beam density
_ is that of an off-centered KV beam of radias The amount
n(x,y)—f f f fO6pyy.py.0)dadpdpy. (1) of the deviation from the axis is given b§,D, with the
. . , dispersion functioD = 1/(pyk,) given in terms of the unde-
In particular, we want to look for stationary solutions ,eqseq focusing function. In other terms, particles of a

df/9z=0. We recall that any function of the integrals of 5 4chromatic KV round beam, from the view point of dis-
motion of a Hamiltonian system is a stationary solution Of?ersion, behave like single particles.

the corresponding Vlasov equation. Therefore, a particulal
stationary solution of the Vlasov equation associated with

the HamiltonianH is given by V. GENERALIZED KV BEAM

¢ S =f.(8)F. (H Next, we look for solutions of the Vlasov-Poisson equa-
(X.Px.Y: Py, 0) =11(9) T (HL). tions describing a beam with a Gaussian-like distribution in
éhe longitudinal momentum and a KV-beam-like distribution

In this paper we consider a distribution in the transvers
in the transverse plane:

Hamiltonianf , (H ) in the form of a Diracs function. In the

absence of dispersion such a choice leads to the usual KV 1

beam. For the distribution in the longitudinal momentum f,(8)= e752/5§ (179
. . . . . . Il - y
spread we discuss two cases: a monochromatic distribution 50\/}
and a Gaussian distribution.
fu (H)=f,6(H, —H,). (17
IV. MONOCHROMATIC KV BEAM
First of all, consider the particular choice We notice at this point that the resulting distribution will
A not have a perfect Gaussian character in the longitudinal mo-
f,(8)=08(5—6,), (123 mentum spread, because the te‘r,qu(Hi) also depends on
. 6. However, in the range of parameters considered in this
in(HL): foo(H, —Hy). (12b paper the deviation from a pure Gaussian distribution will be

relatively small. In particular, the rms longitudinal momen-

Here & is the Dirac delta function anél, is a constant. tum spreadrs= \/<502) will differ from 8,/+/2 by a few per-
Such a distribution describes a beam of particles that areents.

off-momentum by the same amou#dj. Notice that for§ Observe that in the limit,— 0, we recover the usual KV
= §,=0 we recover the usual KV beam. distribution. In the following we will refer to the distribution
The space density associated witlis given by described by Eq(17) as a “generalized KV beam.”

The corresponding space density is
ny)=to | | [ dpdng 53(5-5)5H, ~Ho)

(x,y)=2mf ! fw 7/(>\( )+60Xt -4t
n(x,y)=2wfo——=| 7| N(X, —t]e ,
K . 5 & Y * Sofmd = Y s
=270 7| Hom 504y + 2x=go0 |, (18)
where.7 is the Heaviside step function. The Poisson equawhere we have defined
tion for the self-potential reads K «
q k 5, Nxy)=Ho= 5x*= Zy?=goi(x.y). (19
VZI/I: — 6—27Tf07/( Ho_ E(x2+y2)+p—x—goz,b) .
[0} [0}
(13 The integral in Eq.(18) can be easily carried out and
] o expressed in terms of the error function,
One can verify that a solution is given by
qmfof 5,12 ] n(x,y)= mf,| erf —Mx’y)p") +1} (20)
[ o __0 2 ! - o] 5 X )
vy == X x] Y (14) olX|
for [X— 8, /(peky) 2+ y?<a?, and with
_ qﬂfoaz( 1 3 \* . o] 1) erf(r)=iffe“2dt
(,//(X,y)—_ In a X_J +y | -‘rz \/; 0 .
(15
The Poisson equation then reads
for [x— 6,/(poky) 12+ y?>a?, where
_ q Po Ky ky 2
1( qmfoe) ? 8 V2y=— —mfyierfl = Ho— = x*—2y2—go¢| | +1}.
a2=2l ke go——| | Hot+ =———|. (16) € 8o/ X| 27 2
AR " 2p2k, 1)
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The two parameter§, andH, are related, respectively, to TABLE I. Parameters for the University of Maryland electron
the density of the beam, and its size and emittance. Thek§ng smooth model.

depend on each other through the normalization equation

Beam energye, 10 keV
_ Tunev, 7.6
N = n(x,y)dx dy Focusing functiork 17.437 m?
Radius of curvaturg, 1.82m
!y)pO
=xf, +1|dx dy, (22
I
. . N . . 2 5 A(X,Y)po
whereN, is the linear(longitudina) density of the beam: It (6% = dx d
depends on the currehtby the relationN, =1/(quv,). When 2 2\/_N 2 |X|
we solve Eq(21) for different values of the parametég we o o~ NV o /3ol 12 (28)

will be interested in comparing solutions corresponding to
beams that carry the same current. After setfingp a fixed
value, we shall use Eq22) to determineH, .

Finally, notice that in the limit5,—0 Eqg.(21) turns into
Eq. (13), as expected, since

The normalization factoN, is the same as in ER22). In the
limit of vanishing space chargg— 0, the calculation of sec-
ond moments can be carried out analytically. We found

2 1 8
lim | erf| — | +1|=2.747) 23) (F)=F+7 (29)
5,0 %o B kpgHo
2 (6% 5
A. Emittance calculation (x%)= 7 +k2 T k3 4 (30)
The beam distribution can be characterized in terms of the Po
emittance and related rms quantities. The rms emittance is st
i Ho 1 9
defined by e 24— (31)
<pX> 2 16 k2p4H ’
= ()P —(xp®Y? oo
2
(analogous expression fet)). N, = 2772f0( 2H, + % 2)
For a KV round beam of radius without dispersiorisee k  2k%p2

Eq. (12) with §,=0], it is easily found that ) ) ) )
Notice the expressions above are consistent with theBq.

a2 we derived for a general distributigie., in the expression
<X2>0:Zr <px>o —, (XPx)o=0. for (x2) the coefficient of 62) is D?; the first correction to
(p2) is of order&2).
Therefore, the emittance reads One of our goals will be to check the scaling of the rms
guantities with respect té,, when space charge effects are
a [H, included.
6ox:§ 7 (24)

VI. THE NUMERICAL SOLUTIONS

For the case with dispersion it is possible to reduce the

expressions for the second moments to calculation of doubl
integrals overx andy [11]:

In solving numerically the nonlinear Poisson equation
&1) we have used the successive overrelaxation method
(SOR) described i 12] and recommended iri3].
The numerical solutions of the Poisson equation presented
dx dy, (25 in this paper are based on a choice of parameters that mimic
the design values of the Maryland Electron R{igj in the
smooth approximation. See Table I. In the calculations we
dx dy consider the case of a beam passing through a pipe of square
cross section with side of length 2 cm. The wall of the pipe
is assumed to be an equipotential boundary for the potential
e~ INWY)po /80X 1 x dy, . In this paper we show two sets of solutions.
The solutions of the first set have been obtained by vary-
(26) ing the parameted,, which is related to the rms value;
= 8,/+/2 of the longitudinal momentum distribution. In par-
(xp,)=0. (27)  fticular, &, ranges between 18 and 10°3. The results, in
terms of the horizontal profiley=0) of the beam density
By the same token we can evaluate the rms value of tha(x,y), see Eq(20), are shown in Fig. 1.
longitudinal momentum spread as a function of the param- The various solutions have been normalized in such a way
eterd,: that the corresponding beams carry the same current (

X,Y)Po

+1
Sl

erf(

erf( X.Y)po +1

S

<px>_ )\(X Y)

|X|




x (cm)

1
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FIG. 3. Scaled rms horizontal size of the beamys

=((x?;,1(x*)o)"% as a function of 5, (1=0.105 A, v/,

FIG. 1. Scaled density profile(x,y)/n(0,0) for the generalized 0.317)

KV beam aty=0. Ten density profiles are shown corresponding to ™
values of §, ranging from 0.001 to 0.011&0.105 A, viv,
=0.317). values ofs,, §,<0.005, the rms quantities scale according
to a quadratic power as in the limit of vanishing space charge
=0.105 A. In other words, the normalization constat, [see Eqgs(30), (31)].
see Eq(22), is the same in all the cases. Sifdg depends In the second set of solutions the longitudinal momentum
on &,, in order to achieve the desired normalization the paspread was kept fixeds{,=0.01), while varying the value of
rameterH, has to be properly tuned. The dependencelgf the beam currents. Again, for a given choice of the current
on &,, however, turns out to be quite weak. The other pa{or N,) the normalization equatiof22) has to be solved for
rameter of the problent,,, has been kept fixed, governs  H (the other parametdt, is kept constant The dependence
the peak value of the beam density and should be indepef H, on the current is related to the fact that as the space
dent of &, . charge increases the emittance of the beam has to be de-
The current we have chosen corresponds to a tune depregreased in order for the beam to maintain the same size.
sion v/v,=0.317.(The tune depression is evaluated for theindeed, Eq(24) shows that in the absence of dispersion the
KV beam in the limitd,— 0). Figure 2 shows the full density emittance is proportional to the square rootHf.
function in the &,y) plane for$,=0.01. Ten different currents have been considered, ranging from
The rms value$x2>§o of the horizontal size of the beams |=0.02 tol=0.112 A, and corresponding to a tune depres-
and the horizontal emittances have been calculated accordirggen ranging betweemn/v,=0.91 andv/v,=0.20. The val-
to Eq.(27) and the results shown in Fig. 3 and Fig. 4. In bothues of the parameters for the various beams are summarized
pictures we plot the scaled values,=((x?)s /(x?),)¥2 in Table IIl. The tune depression and emittance reported in
and e,/ €5, Where(x?), and e, are the valuescj of the cor- the table refer to the corresponding KV beams in straight

responding quantities fof, =0 (standard KV beajn That ~channels. The density profiles are shown in Fig. 5.
is, the rms quantities are scaled with respect to the corre- The rms values of the horizontal size of the beam have

sponding quantities of a KV beam in a straight channel undef!SC been calculated and are shown in Fi@za@ain,zwhall;[ we
the same external focusing and with the same current.  actually plot is th? scaled.quanutyms:((x Y5,/ (x%)a) ™.
The curves in the figures are the parabolic fitting obtained’he data shown in the picture allow one to check the ad-

by retaining the first four points. As we can see, for smallequacy of the first of Eqg7) to describe the horizontal rms
size of the beam after the substitution of the undepressed

1.05 T .
/ [ ]
€,/
1.04¢ °
[
1.03f
n(x,y) .
1.02¢ L
1.01¢t
1 80
0.002 0.004 0.0006 0.008 0.01

FIG. 2. Density distributionn(x,y) for 1=0.105 A, v/v,
=0.317,6,=0.01.

FIG. 4. Scaled horizontal rms emittaneg/ €, , as a function of
8, (1=0.105 A, v/v,=0.317).
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TABLE Il. Current, perveance, tune depression, and rms emit-1.035 T "
tance for round KV beams of 10 keV electrons. Beam radius is 1 . \
om 1.03FX s
1.025 \
I (A) K vliv, €ox (MM mrad 1 02 \
0.0200 0.298& 10 3 0.910 95.03 1.015 .
0.0302 0.451%10°3 0.861 89.88 \
0.0404 0.603%10°°  0.809 84.40 1-01 NG
0.0507 0.756% 102 0.752 78.54 1.005 e ]
0.0609 0.909210°°  0.692 72.22 . Tl e ]
0.0711 1.061810°°%  0.625 65.28 V/Vo
0.0813 1.214%10°3 0.551 57.51 0.995 02 02 G 0 1
0.0916 1.367x 103 0.465 48.52 ) )
0.1018 1.519% 103 0.358 3741 FIG. 6. Scaled horizontal rms sizgns=((x%)5,/(x*)o)"* as a
0.1120 1.672% 103 0.202 21.12 function of the tune depressioriv,, (dots. The dashed line repre-

sents Eq(32).

tune with the depressed tune in the expression for the dispeence of a finite momentum spread smooths the space distri-
sion. bution in the horizontal plane. As a result a tail appears,
The dashed curve in the picture is which is responsible for the rms growth of the horizontal
plane. The tail profile has a rough exponential behavior,
which is a reflection of the particular distribution of the mo-
(32 mentum spread we chose. For small values of the rms mo-
mentum spreadrs=3J,/\/2 the rms horizontal scales qua-

with D=p, /12, wherev is the depressed tune evaluated fordratically with respect ta, as expected. _
gives a good approximation if the tune depression is suffilmomentum spread, is a function of the current. In particular,
ciently high, for a smaller tune depression it provides a veryt increases with the currerit.e., it increases as the tune

22 \ 172
52D

2(x?),

Xrms= ( 1+

large upper bound. depressionv/v, decreases This effect is expected. For
Finally the scaled emittance has also been calculated arl@rger currents the effective focusing on the particles due to
plotted in Fig. 7. the space charge is smaller and therefore particles off-

momentum will tend to reach larger distances off-axis on the
horizontal plane. However, as the beam spreads out trans-
versely the charge density decreases and the net focusing
The main purpose of this study was to evaluate the scalingets less depressed. This mechanism explains the overesti-
of the parameters characterizing the be@ms size, emit- mate of the rms horizontal size growth, based on the simple
tance as a function of the longitudinal momentum devia- replacement of the undepressed tune with the depressed tune
tions and space charge. The stationary solutions of th& the expression for the dispersion functigiig. 6, dashed
Vlasov-Poisson equation have been calculated in the form dine). For an attempt to give a more accurate analytical de-
generalized KV beam distributions, which turn into the stan-scription of the rms quantities of the beam as a function of
dard KV distributions in the limit of vanishing longitudinal the tune depression, we refer to another pafé.
momentum spread. For a given current we see that the pres- Finally we want to remark that all the comparisons have
been carried out between a solution of the full Vlasov-
Poisson equation with the dispersive terms and a solution of

VII. DISCUSSION

1.1-gx/gOX

1.04¢

S O =2 N WU

3 1.02¢ .
0.2 0.4 0.6 0.8 1.0 1.2 1.4 * .,

1t ® o oo

x (cm) o o8 V/V,
’ 0.2 0.4 0.6 0.8 1

FIG. 5. Section of the density distributiomgx,y) aty=0 for
various beam currentsee Table ). The densities are in units of FIG. 7. Scaled horizontal rms emittaneg/ €, , as a function of
10 particles/cm. 6,=0.01. the tune depression/ v, .
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— where M0 1 is the transfer map that gives the position of
o 1 any point in the phase space atz' as a function of the
o 0.3 position in phase space a& z°:

A

& o {'= M o1

——

o 0.4 For a continuous bend of radiys in the linear approxi-
¥ 0.2 mation the transfer map reads

g 0

1 1)
f_yo0 f 0" i f _ f
0.2 04060.81.01.21.241.6 X =X COSwZ+prS|an+—2(1 COSwZ),

pw

x (cm _ o

(cm) pl=—xw sin wz'+p? coswz'+ — sin wz',
FIG. 8. Scaled density profila(x,0)/n(0,0) of the KV beam P
(simplified analytical modglafter a matched injectiofsolid line) 1
and profile corresponding to the stationary solution of the Vlasov- y =y° coswz’+ pg_ sin wz',
Poisson equation evaluated numericdthashed ling o

f_ H f f
the same equation without a dispersive tefira., 1p,=0) py=—Y°0 sin wz'+p§ coswz', (34
corresponding to a beam carrying the same current and ex-

posed to the same external focusing. The last solution o\f\’h\?\;ew IS thde depressed l.Jetatr.on fre%“%”.CY- . : b
course is just an ordinary KV beam. Both solutions are sta- /€ consider two cases: a mismaiched injection given by

tionary solutions in smooth circular and straight channels” @Prupt transition from a straight injection line to the
respectively smooth circular channel and a matched injection. The

It is interesting to question whether the generalized KVmatched injection can be obtained by a continuous bend with

beam is the result of the evolution of the corresponding Kyradius of curvaturgg=2p,, the same focusing as in the

beam after injection into a dispersive channel, or more gen(-:'rCUIar machine and lengtls = m/w=NXy/2 (A}, is the beta-
erally what is the relationship between the two. It is ourlron oscillation wavelengdhIn both cases we assume for the

conjecture that a least for relatively small currents the genP&2m an initial KV distribution described by

eralized KV beam should provide a close approximation of
the stationary solution of the Vlasov equation that is

2
achieved after a matched injection of an ordinary KV beam _ fo el oo 00
: . . . =— —(pi+ps)+—(x+y°)— .
with Gaussian momentum spread into a circular channel. In g 50\/}e °0 2(px Py) 2 (+y?)—H,
the next section this issue is addressed by working out a (35)

simplified analytical model.
Next we want to calculate the evolution of the beam den-

sity after injection. Consider the matched case first. After
VIII. "TIME” DEPENDENT VLASOV EQUATION evaluating the distribution function at=z'<zg using Egs.

So far we have been dealing with the problem of studying33) and (35) and the expression for the transfer mad),
the stationary solutions of the Vlasov equation. However, ad/€ integrate ovep,,py,d to find the corresponding space
pointed out in the preceding section, it would also be inter-density to be
esting to investigate the evolution of(standargl KV beam
after injection into a smooth dispersive channel. The exact
treatment of this problem would require the solution of the n(xy)=fomlerf(r.(xy,z))—erf(7_(x,y,2))]. (36)
“time” dependent Vlasov equatioril0) and related Max-
well equations. The problem would probably be best andHerer, and r_ are defined by
most efficiently solved by using a particle in c@RIC) code
instead of directly trying to solve the required PDE.

In this section we work out a simplified analytical model _ ,Pe XE \/az—yi 3
and explore the two cases of matched and mismatched injec- T+(XY,2) = 5, (1-coswz)’ (37)

tion. In the model we assume that the only net effect of space
charge is to depress the focusing function. Also, we negleakith a being the radius of the KV beam at injection. At
all the possible effects stemming from time-dependent fields=z; we get a profile that matches the stationary beam den-
First, let us introduce the symbélto denote the set of the sity within the circular channel.
dynamical variables. A certain distribution in the phase space Comparison(Fig. 8) with the density profile obtained by
at the initial locationz=2°, g(Z°), evolves into a distribu- Nnumerical solution of the Vlasov-Poisson equation will allow
tion f(Ef'Zf) atz=z' given by us to determine.s= w?, by numerical fitting. For the case
5,=0.01 andl=1.05 A, we find that we obtain relatively
= 13 similar profiles ifkos=2.63 m 2. If kot were calculated us-
f(£2)=9(M 0 1), (33 ing an ideal KV beam model with radizsusing Eq.(8), we
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density profile is the same as in the case of a matched injec-
o ! = tion (solid line in Fig. §; atz=\,/2 it reaches its maximum
o 0.8 /16 extension.
'
g 0.6} IX. CONCLUSIONS
~
o 0.4 A\ In this paper we have shown and discussed stationary so-
- b lutions of the Vlasov-Poisson equation describing beams of
5 0.2 charged particles in the presence of dispersion. In particular,
g we have considered solutions that provide the generalization
. . . . . . . . of the KV beam. The numerical solutions presented in the
0.2 0.40.60.81.01.21.41.6 paper show, as expected, that dispersion reshapes and en-
larges the beam distribution. The growth, however, evaluated
x (cm) with respect to ordinary KV beams obtained as solution of

the same Vlasov equation with vanishing dispersive term, is

momentum spread injected into a smooth dispersive chasimet modest. In a strong focusing lattice£1), for a tune de-

plified analytical model Mismatched injection. The four beam pression ¢/v,) in t_he range 9'2_,0'4 the growth for emit-
density profiles correspond =\ /16 \,/8\ 4\ /2, wherer, is  tance and rms horizontal radius is of the order of or below

the betatron oscillation wavelength. 10%. One important lesson learned from the study is that for
highly space charge dominated beams, the dispersion func-
tion cannot be calculated simply by changing the unde-
would find the resulkes=1.75 m 2. The deviation between pressed tune with depressed tunes in the formulas. This re-
the two values can be JUSt|f|Ed in terms of the enlargement 0§u|t, obtained here in the smooth approximaﬁon, has
the horizontal cross section of the beam and consequent dgotivated us to develop a method to calculéproxi-
crease of the space charge forces. In other terms, as we hajftely) the dispersion function in the more general case with
already nOtiCEd, the effective tune, because of diSperSion, |§ z dependence, which is relevant for matching purposes
larger than before injection. [14].
In the case of a mismatched injection the density is de-
fined by Eqs.(36) and (37) with p, replacingpg. The for-
mula shows that the beam pulses around the equilibrium pro-
file corresponding to the matched beam. We thank Nathan Brown for suggesting the use of the
The profiles at four different values ofz  SOR method and J. G. Wang for useful discussions. The
(Np/LBN /BN /AN L/2) are shown in Fig. 9. Az=\p/4 the  work was supported by the U.S. Department of Energy.

FIG. 9. Evolution of a KV beam with Gaussian longitudinal
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